European N budgets for farm, land and soil: N surplus, N use efficiency and N dynamics Adrian Leip, Wolfgang Britz, Franz Weiss, Hans Kros, Gert Jan Reinds, Wim de Vries

Contents

- Farm, land and soil nitrogen budgets
- The models CAPRI and INTEGRATOR
- N surplus and N use efficiency in farm and soil budgets related to agricultural production structure
- Dynamics in land N budgets in agricultural and terrestrial systems

Farm, land and soil nitrogen budgets

- Farm N budget (farm-gate budget) record N in all kinds of products that enter and leave the farm: output is crop and animal products.
- Land N budget (OECD gross N balances) record N that enters and leaves the farmland (includes housing/manure storage systems and soil): output is crop products and grass
- Soil nitrogen budgets: (soil surface budget) record N that enters and leaves the soil: output is crop products and grass.

Inputs in regional farm, land and soil N budgets

Inputs	Flux- terms	Farm system budget	Land system budget	Soil system budget
Mineral N fertilizer	N _{minfert}	Fertilizer purchase	Fertilizer application	Fertilizer application
Manure N input	N _{manure}	Trade of manure between farms ¹	Manure <i>excretion</i> in housing systems and by grazing animals on pasture	Manure <i>application</i> and manure excretion <i>by</i> <i>grazing animals</i> on pasture
Other forms of N fertilizer (compost, sewage sludge)	N _{other=} N _{compost} + N _{sewage_sludg} e	yes, if data available	yes, if data available	yes, if data available
Imported products	N _{import}	Feed purchases, animal and crop products	no	no
Biological N- fixation	N _{biofix}	yes	yes	yes
N deposition	N _{atmdep}	yes	yes	yes

Outputs in regional Farm, land and soil N budgets

Outputs	Flux- terms	Farm system budget	Land system budget	Soil system budget
Exported products	N _{products} N _{rem} N _{residue}	Sold animal (meat, milk etc.) and crop products ² .	Plant products in arable systems and the net removal of grass in livestock systems ² .	Plant products in arable systems and the net removal of grass in livestock systems ³ .
N pool changes	N _{pool}	No	Usually not. estimated in some models, e.g. CAPRI and INTEGRATOR	Yes
Emissions of N to air (NH _{3,} N ₂ O, NOx, N ₂)	N _{-housing} N _{mms} N _{soil}	Losses from housing/ manure management systems and soil	Losses from housing/ manure management systems and soil	Losses from soil
Leaching and runoff of N to ground- and surface water	N _{leaching} N _{runoff}	Losses from housing/ manure management systems and soil	Losses from housing/ manure management systems and soil	Losses from soil

Use of the CAPRI and INTEGRATOR model

CAPRI was used to illustrate N surplus and NUE relations in farm, land and soil budgets in agro– ecosystems as it can estimate all N budgets

 INTEGRATOR was used to assess dynamics in land (and soil) N budgets in both agro– ecosystems and other terrestrial systems

Characteristics of CAPRI and INTEGRATOR

Overview of available models approaches

Model approach	Method	Sectors considered	Area involved	Geographic resolution	Time
CAPRI	Economic model for agriculture, linked to mechanistic model to simulate soil N budget	Agriculture	EU 27	HSMU	2002
INTEGRATOR	Adapted MITERRA approach for agricultural systems. Statistical model for terrestrial systems	Agriculture, terrestrial systems	EU27+3	NCU	1970- 2030

Leip et al, 2008, Biogeosciences

NitroEurope IP

Data sets to estimate N inputs and outputs

Model inputs	CAPRI	INTEGRATOR
Land cover	EUROSTAT production statistics	CLUE model outcome, based on
		CORINE 2000.
Land use	LUCAS crop database	CAPRI data.
(crops)		
Animal	EUROSTAT production statistics.	FAO database
livestock		
numbers		
Nitrogen	FAO/ IFA/ IFDC data	FAO/ IFA/ IFDC data
fertilizer		
application		
N excretion	Calculated as N input (feed, fodder)	N excretion model scaled to GAINS
factors	minus N output (products sold).	data in 2000
N deposition	EMEP model estimates	EMEP model estimates
levels		

Data sets to estimate N inputs and outputs

_		
Model inputs	CAPRI	INTEGRATOR
Biological N	Fixed fraction of aboveground	2 kg N ha ⁻¹ for arable land
Fixation rates	nitrogen uptake	5 kg N ha ⁻¹ and grassland
	0.05 for fodder on arable land.	1.2-1.3 times the harvested N
	0.75 for pulses and legumes	amount for pulses/legumes
Crop yields	EUROSTAT production statistics	FAO database
Nitrogen	Constant values	N contents varying with N input
contents in		
crops		
Nitrogen-	NH_3 emission factors: GAINS.	NH_3 emission factors: GAINS N_2O
emission	N ₂ O emission factors: IPCC	emission factors: function of N
fractions		source, application technique, soil
		type, pH, land use, precipitation

N surplus and NUE in different N budgets

$$\mathbf{N}_{\text{surplus}} = \mathbf{N}_{\text{in}} - \mathbf{N}_{\text{removal}}$$
(1)

- farm: removal output is crop and animal products.
- Land and soil: output is crop products and grass (feed and fodder)
- NUE = $N_{removal} / N_{in}$ (2)

Combination of 1 and 2 gives:

 $\blacksquare NUE = 1 - (N_{surplus}/N_{in})$ (3)

NS and NUE for farm, land and soil N-budgets

NitroEurope IP

Relation N surplus and NUE in farm and soil

budgets

Relation N surplus in farm/soil budget and N inputs

Relation NUE and agricultural characteristics

Correlation NUE and agricultural characteristics

Characteristic	Farm NUE	Soil NUE	
a) Output composition			
Animal output / Total output	-0.86	-0.71	
Crop output / Total soil output	0.83	0.42	
Fodder output / Total soil output	-0.81	-0.59	
Crop residues / Total soil output	0.39	0.54	
b) Input composition			
Mineral fertilizer / Total farm input	0.40	0.68	
Feed import / Total farm input	-0.54	-0.90	
Feed import / Total feed	-0.52	-0.91	
Atmospheric deposition / Total farm input	0.61	0.78	
Manure excretion / Total soil input	-0.62	-0.87	
c) Intensity measures			
Feed import [kg N ha ⁻¹]	-0.37	-0.81	
Manure excretion [kg N ha ⁻¹]	-0.50	-0.79	
Manure application / Mineral fertilizer	-0.29	-0.68	

Conclusion farm, land and soil N budgets

- While there is a high correlation between soil, land, and farm N-surplus, there is more scatter for the NUE indicators calculated by the three approaches.
- NUE is 32% for the farm budget, 60% for the land budget and 65% for the soil budget.
- Total N input and the specialization to animal production (manure excretion, high share of feed import or fodder output) are found to be the main drivers for a high NS and low NUF

Assessment N dynamics in terrestrial ecosystems

- N fertilizer use, animal numbers, milk and meat production and crop yields from FAO database and IMAGE predictions.
- N excretion rates scaled to RAINS/GAINS data for 2000, based on a simple N excretion model, using milk production for dairy cattle and meat production for all other cattle.
- N deposition history based on historical NO_x emissions by EMEP, agricultural NH₃ emissions by INTEGRATOR and non agricultural sources by IMAGE and using an emission-deposition matrix based on the EMEP model

Assessment N dynamics in terrestrial ecosystems

- Constant N fixation rates, but using FAO data and IMAGE predictions on trends in the area of dry pulses and soy beans
- Scaled N contents in crops, based on a change in N availability (this is automatically calculated in INTEGRATOR).
- Trends in NH₃ emission factors in view of changes in housing systems and manure application techniques. For 2000, GAINS data are used.
- N pool changes related to the dynamics in C sequestration, assuming a fixed C/N ratio.

N budgets for different land uses in EU 27 in 2000

Source	N budget (Mton N.yr ⁻¹)		
	Agriculture	Forests	Semi-natural
	-		vegetations
Inputs			
Synthetic fertiliser	11.5	-	-
Manure input (grazing)	10.3	-	1.00
Deposition	2.7	1.37	0.35
Biological N fixation	1.3	0.27	0.21
Total	25.7	1.64	1.56
Outputs			
Net uptake	15.43	0.30	0.78
N accumulation	-3.3	0.73	-0.026
Emissions of			
NH ₃	2.9	0.021	0.22
N ₂ O	0.4	0.045	0.037
NO _x	0.21	0.013	0.018
N ₂	7.0	0.26	0.43
N leaching + runoff	3.1	0.27	0.11
Total	25.7	1.64	1.57

Dynamics NH₃ fluxes and N leaching in 1970-2030

Conclusion/discussion N dynamics

 N outputs follow changes in N inputs. For past: data are know on fertilizer use, animal numbers, crop areas and yields

 Uncertainties in N excretion, N crop contents and N emission factors in time as a function of agricultural management

Large uncertainties in N pool changes and N₂ emissions, both at present and in time: requires more attention.

Questions?

© Wageningen UR

